Laboratory for Acoustics

Determination of the sound absorption (reverberation room method) of vinyl wallcovering, manufacturer Vescom
Determination of the sound absorption (reverberation room method) of vinyl wallcovering, manufacturer Vescom
Table of contents

1 Introduction 4

2 Standards and guidelines 5

3 Tested construction 6

4 Measurements 7

4.1 Method 8
4.2 Accuracy 9
4.3 Environmental conditions during the measurements 10
4.4 Results 10
1 Introduction

At the request of Vescom bv based in Deurne (The Netherlands), laboratory measurements of the sound absorption (reverberation room method) were carried out on:

vinyl wallcovering, manufacturer Vescom

in the Laboratory for Acoustics of Peutz bv, at Mook, the Netherlands (see figure 1).

For these type of measurements the Laboratory for Acoustics has been accredited by the Dutch Accreditation Council (RvA).

The RvA is member of the EA MLA (EA MLA: European Accreditation Organisation Multilateral Agreement: http://www.european-accreditation.org).

EA: “Certificates and reports issued by bodies accredited by MLA and MRA members are considered to have the same degree of credibility, and are accepted in MLA and MRA countries.”
2 Standards and guidelines

The measurements have been carried out according to the Quality Manual of the Laboratory for Acoustics as well as:

ISO 354:2003

NOTE:

this international standard has been accepted within all EU-countries as European standard EN ISO 354:2003

Various other related norms:

EN ISO 11654:1997

Acoustics Sound absorbers for use in buildings Rating of sound absorption

ASTM C423-09a

Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method

1 According to this norm, the report should include for each measurement the mean reverberation times T_1 and T_2 at each frequency. Because these figures are not relevant for judging the quality of the product being tested, but merely for judging the accuracy of the calculations, they have been omitted in this report. It is possible of course to reproduce those figures at any time if the principal requests this.
3 Tested construction

The data presented here have been received from the principal or obtained by own observations.

The measurements have been carried out on the following materials.

<table>
<thead>
<tr>
<th>Wallcovering 001</th>
<th>Wallcovering 002</th>
</tr>
</thead>
<tbody>
<tr>
<td>manufacturer:</td>
<td>manufacturer:</td>
</tr>
<tr>
<td>Vescom</td>
<td>Vescom</td>
</tr>
<tr>
<td>type:</td>
<td>type:</td>
</tr>
<tr>
<td>Nero</td>
<td>Color Choice</td>
</tr>
<tr>
<td>view side:</td>
<td>view side:</td>
</tr>
<tr>
<td>Vinyl</td>
<td>Vinyl</td>
</tr>
<tr>
<td>weight 354 gr/m²</td>
<td>weight 419 gr/m²</td>
</tr>
<tr>
<td>thickness 0,5 mm</td>
<td>thickness 0,5 mm</td>
</tr>
<tr>
<td>backing:</td>
<td>backing:</td>
</tr>
<tr>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

The results as presented here relate only to the tested items and laboratory conditions as described in this report. The laboratory can make no judgement about the representativity of the tested samples. The test report ahead is valid as long as the tested constructions and/or materials are unchanged.
4 Measurements

The wall coverings to be tested (see description in chapter 3) is measured at the following mounting conditions:

1. direct on the concrete floor of the reverberation room;
2. on a 12,5 mm thick (closed) gypsum board panel. The gypsum panels including the wall covering is mounted with a cavity of 40 mm behind it. The cavity is filled with mineral wool;
3. The test specimen is mounted with an air space of 40 mm behind it. The cavity is filled with mineral wool.

<table>
<thead>
<tr>
<th>Measurement set-up 1</th>
<th>1: Vinyl wall covering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement set-up 2</th>
<th>1: Vinyl wall covering 2: Gypsum plasterboard, t = 12,5 mm 3: Mineral wool</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement set-up 3</th>
<th>1: Vinyl wall covering 3: Mineral wool</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The perimeter edges of the test specimen are covered with an acoustical reflective frame, the facing side of the panels was up. The measurement setups are according to type B and E mounting, as described in annex B of the ISO 354:2003 (Test specimen mountings for sound absorption tests).
4.1 Method

The tests were conducted in accordance with the provisions of the test method ISO 354 in the reverberation room of "Peutz bv" in Mook (the Netherlands) (see figure 1). The relevant data regarding the reverberation room are given in figure 2 of this report.

By means of reverberation measurements the reverberation time of the room is measured under two conditions:
- when the reverberation room is empty
- when the construction under test is inside the reverberation room

In general, once material is placed into the reverberation room a lower reverberation time will result.

The difference in reverberation times is a measure of the amount of absorption brought into the room.

Measurements and calculations were carried out in 1/3-octave bandwidth from 100 to 5000 Hz, according to the norms. Where applicable the octave values have been calculated from these 1/3-octave values.

From the reverberation measurements in the empty reverberation room the equivalent sound absorption A_1 is calculated (per frequency band) according to formula 1 and expressed in m^2

$$A_1 = \frac{55.3 V}{c T_1} - 4V m_1$$

(1)

in which:
- V = the volume of the reverberation room
- T_1 = the reverberation time in the empty reverberation room
- m_1 = "power attenuation coefficient" in the empty room, calculated according to formula
- c = the speed of sound in the air, in m/s, calculated according to

$$c = 331 + 0.6 t$$

(2)

in which:
- t = the temperature; this formula is valid for temperatures between 15 and 30 °C

$$m = \frac{\alpha}{10\log(e)}$$

(3)

in which:
- α = "attenuation coefficient" according to ISO 9613-1
In the same manner the equivalent sound absorption \(A_2 \) for the room with the test specimen is calculated according to formula 4, also expressed in m\(^2\)

\[
A_2 = \frac{55.3 V}{c} - 4V m_2
\]

(4)

in which:

\(c \) and \(V \) have the same definition as in formula 1 and

\(T_2 = \) the reverberation time of the reverberation room with the test specimen placed inside [sec]

\(m_2 = \) "power attenuation coefficient" in the room with the test specimen placed inside, calculated according to formula 3 [m\(^{-1}\)]

The equivalent sound absorption \(A \) of the test specimen has been calculated according to formula 5 and is expressed in m\(^2\)

\[
A = A_2 - A_1
\]

(5)

When the test specimen consists of one plane with an area between 10 and 12 m\(^2\) the sound absorption coefficient \(\alpha \) has to be calculated according to formula 6:

\[
\alpha = \frac{A}{S}
\]

(6)

in which:

\(S = \) the area of the test specimen [m\(^2\)]

4.2 Accuracy

The accuracy of the sound absorption as calculated can be expressed in terms of repeatability (tests within one laboratory) and reproducibility (between various laboratories). When:

- two tests are performed on identical test material
- within a short period of time
- by the same person or team
- using the same instrumentation
- under unchanged environmental conditions

the probability will be 95% that the difference between the two test results will be less than or equal to \(r \).

In order to evaluate the repeatability \(r \) for the sound absorption measurements performed in the reverberation room of "Peutz bv" in Mook (the Netherlands) eight series of measurements have been carried out according to ISO 354:1985 annex C. From the results of those measurements the repeatability \(r \) has been calculated. It was found that for the frequency range from 100 to 200 Hz and at 5000 Hz the repeatability \(r \) is 0.21 as a maximum. For the frequency range 250 to 4000 Hz the repeatability \(r \) is 0.09 as a maximum.
4.3 Environmental conditions during the measurements

4.1 Environmental conditions during the measurements at December 12th, 2016

<table>
<thead>
<tr>
<th>reverberation room</th>
<th>temperature [°C]</th>
<th>barometric pressure [kPa]</th>
<th>relative humidity [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>empty</td>
<td>17.1</td>
<td>102.8</td>
<td>53</td>
</tr>
<tr>
<td>occupied</td>
<td>17.2-17.6</td>
<td>102.7-102.8</td>
<td>51-53</td>
</tr>
</tbody>
</table>

4.4 Results

The results of the measurements are given in table 4.2, 4.3 and in figure 3 to 8. The measurements were made in 1/3-octave bands. The results presented in octave-bands are the arithmetic average of the results of the three 1/3-octave bands belonging to that octaveband. From those values the following one-figure ratings have been calculated and stated:

- the "weighted sound absorption coefficient αw" according to ISO 11654;
- the "Noise Reduction Coefficient NRC" according to ASTM-C423, being the average of the absorption coefficients (1/3 octave values) at the frequencies of 250, 500, 1000 and 2000 Hz, rounded to the nearest 0,05;
- the "Sound Absorption Average SAA" according to ASTM-C423, being the average of the absorption coefficients (1/3 octave values) at the frequencies of 200 Hz up to 2500 Hz, rounded to the nearest 0,01.
4.2 Measurement Results Vinyl Wall Covering

Sound Absorption Coefficient \(\alpha_s \)

<table>
<thead>
<tr>
<th>prod nr.</th>
<th>001</th>
<th>002</th>
</tr>
</thead>
<tbody>
<tr>
<td>mounting</td>
<td>direct at the concrete floor</td>
<td>direct at the concrete floor</td>
</tr>
<tr>
<td>cavity</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>total height</td>
<td>1 mm</td>
<td>1 mm</td>
</tr>
<tr>
<td>record nr.</td>
<td>#110</td>
<td>#111</td>
</tr>
<tr>
<td>figure</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>frequency [Hz]</th>
<th>1/3 oct.</th>
<th>1/1 oct.</th>
<th>1/3 oct.</th>
<th>1/1 oct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>-0.01</td>
<td>-0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>160</td>
<td>0.00</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.00</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>315</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>630</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>0.01</td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>1000</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>1250</td>
<td>0.02</td>
<td></td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>0.03</td>
<td></td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>0.04</td>
<td>0.05</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>2500</td>
<td>0.07</td>
<td></td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>3150</td>
<td>0.11</td>
<td></td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>0.13</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>5000</td>
<td>0.15</td>
<td></td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>(\alpha_w)</td>
<td>0.05</td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>0.00</td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>SAA</td>
<td>0.02</td>
<td></td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>
Sound Absorption Coefficient α_s

<table>
<thead>
<tr>
<th>prod nr.</th>
<th>mounting</th>
<th>cavity</th>
<th>total height</th>
<th>record nr.</th>
<th>figure</th>
<th>frequency [Hz]</th>
<th>1/3 oct.</th>
<th>1/1 oct.</th>
<th>1/3 oct.</th>
<th>1/1 oct.</th>
<th>1/3 oct.</th>
<th>1/1 oct.</th>
<th>1/3 oct.</th>
<th>1/1 oct.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>at gypsum board + cavity filled with mineral wool</td>
<td>40 mm</td>
<td>53 mm</td>
<td>#222</td>
<td>5</td>
<td>100</td>
<td>0,44</td>
<td>0,50</td>
<td>0,06</td>
<td>0,04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>at gypsum board + cavity filled with mineral wool</td>
<td>40 mm</td>
<td>53 mm</td>
<td>#185</td>
<td>6</td>
<td>125</td>
<td>0,29</td>
<td>0,30</td>
<td>0,32</td>
<td>0,13</td>
<td>0,16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>at 40 mm cavity filled with mineral wool</td>
<td>40 mm</td>
<td>40 mm</td>
<td>#259</td>
<td>7</td>
<td>160</td>
<td>0,16</td>
<td>0,16</td>
<td>0,29</td>
<td>0,13</td>
<td>0,16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>at 40 mm cavity filled with mineral wool</td>
<td>40 mm</td>
<td>40 mm</td>
<td>#296</td>
<td>8</td>
<td>200</td>
<td>0,11</td>
<td>0,12</td>
<td>0,42</td>
<td>0,12</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>0,09</td>
<td>0,09</td>
<td>0,68</td>
<td>0,66</td>
<td>0,70</td>
<td>0,68</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>315</td>
<td>0,07</td>
<td>0,07</td>
<td>0,87</td>
<td>0,91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td>0,07</td>
<td>0,06</td>
<td>0,99</td>
<td>0,99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>0,05</td>
<td>0,05</td>
<td>0,83</td>
<td>0,80</td>
<td>0,74</td>
<td>0,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>630</td>
<td>0,04</td>
<td>0,04</td>
<td>0,59</td>
<td>0,51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>800</td>
<td>0,04</td>
<td>0,05</td>
<td>0,43</td>
<td>0,38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1000</td>
<td>0,04</td>
<td>0,04</td>
<td>0,31</td>
<td>0,32</td>
<td>0,28</td>
<td>0,29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1250</td>
<td>0,05</td>
<td>0,06</td>
<td>0,22</td>
<td>0,21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1600</td>
<td>0,09</td>
<td>0,10</td>
<td>0,17</td>
<td>0,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2000</td>
<td>0,12</td>
<td>0,12</td>
<td>0,14</td>
<td>0,14</td>
<td>0,16</td>
<td>0,16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2500</td>
<td>0,16</td>
<td>0,17</td>
<td>0,13</td>
<td>0,14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3150</td>
<td>0,19</td>
<td>0,20</td>
<td>0,11</td>
<td>0,14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4000</td>
<td>0,19</td>
<td>0,20</td>
<td>0,09</td>
<td>0,10</td>
<td>0,12</td>
<td>0,12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5000</td>
<td>0,23</td>
<td>0,25</td>
<td>0,11</td>
<td>0,11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

α_w	0,10	0,10	0,20(LM)	0,20(LM)
NRC	0,10	0,10	0,50	0,45
SAA	0,08	0,08	0,48	0,47
The sound absorption coefficient of a material is not a material property. It should be taken into account that the sound absorption of a construction depends on the dimensions, the way of mounting of the material and its position in the room.

Mook,

Th. Scheers
Laboratory Supervisor

dr. ir. M.L.S Vercammen
Manager

This report contains 13 pages and 8 figures.
OVERVIEW

air supply installations
reverberation room
receiving room
sending room
conference analyses
measurement of the reduction of transmitted impact noise
waste water

level +2800 mm

Ground level

plenum
silencer
silencer
suspended ceilings or raised floors

opening (A) (closed) w x h = 1300 x 1905 mm

TEST OPENINGS (w x h in mm)
(B) 1000 x 2200
(C) 1500 x 1250
(D) 4300 x 2800
(E) 4000 x 4000
REVERBERATION ROOM

The reverberation room meets the requirements of ISO 354:2003.

additional data:
- volume: 214 m³
- total area S_t (walls, floor and ceiling): 219 m²

diffusion: by the shape of the room and by adding 6 curved and 2 flat reflecting elements with a total area of approx. 13 m² a sufficient diffusion has been gained.

reverberation time of the empty reverberation room during measurements of 12-12-2016

<table>
<thead>
<tr>
<th>frequency (1/1 oct.)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>reverberation time</td>
<td>7.98</td>
<td>6.23</td>
<td>6.05</td>
<td>5.43</td>
<td>4.13</td>
<td>2.65</td>
<td>sec.</td>
</tr>
</tbody>
</table>

repeatability r (1/1 oct.) c.f. ISO 354:1985 annex C (see chapter 4.2 of this report).

<table>
<thead>
<tr>
<th>r at high α</th>
<th>0.13</th>
<th>0.04</th>
<th>0.04</th>
<th>0.02</th>
<th>0.02</th>
<th>0.08</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>r at low α</td>
<td>0.09</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>-</td>
</tr>
</tbody>
</table>

plan

- boundary for samples
- loudspeaker (4x)
- microphone (3x)

(closed) testopenings
(width x height in mm)
- (A): 1300 x 1800
- (B): 1000 x 2200
- (C): 1500 x 1250

height at:
- a: 5573 mm
- b: 5102 mm
- c: 5000 mm
- d: 5580 mm

Report A 3233-1E-RA Figure 2
MEASUREMENT OF SOUND ABSORPTION IN A REVERBERATION ROOM
ACCORDING TO ISO 354:2003

principal: Vescom B.V.

Variant 1

Wallcovering 001
manufacturer: Vescom
type: Nero
view side: Vinyl
weight 354 gr/m²
thickness 0,5 mm
backing: none

Measurement set-up 1
1: Vinyl wallcovering

volume reverberation room: 214 m³
surface area sample: 11,7 m²
heigth of the construction: 0,001 m
measured at: Peutz Laboratory for Acoustics
signal: broad-band noise
bandwidth: 1/3 octave

αw (ISO 11654) = 0,05
NRC (ASTM - C423) = 0,00
SAA (ASTM - C423) = 0,02

publication is permitted for the entire page only

Mook, measured at 12-12-2016
Wallcovering 002
manufacturer: Vescom

type: Color Choice

view side: Vinyl
weight 419 gr/m²
thickness 0,5 mm

backing: none

Measurement set-up 1
1: Vinyl wallcovering

volume reverberation room: 214 m³

surface area sample: 11,7 m²

height of the construction: 0,001 m

measured at: Peutz Laboratory for Acoustics

signal: broad-band noise

bandwidth: 1/3 octave

α_w (ISO 11654) = 0,05

NRC (ASTM - C423) = 0,05

SAA (ASTM - C423) = 0,03

publication is permitted for the entire page only

Mook, measured at
12-12-2016

report A 3233-1E-RA
Variant 3

Wallcovering 001
manufacturer: Vescom
type: Vinyl
view side: 354 gr/m²
weight thickness 0,5 mm
backing: none

Measurement set-up 2
1: Vinyl wallcovering
2: Gypsum plasterboard, t = 12,5 mm
3: Mineral wool

Volume reverberation room: 214 m³
Surface area sample: 11,7 m²
Height of the construction: 0,053 m
Measured at: Peutz Laboratory for Acoustics
Signal: broad-band noise
Bandwidth: 1/3 octave

α₆₀ (ISO 11654) = 0,10
NRC (ASTM - C423) = 0,10
SAA (ASTM - C423) = 0,08

Mook, measured at 12-12-2016
Frequency [Hz]

125 250 500 1k 2k 4k

Absorption coefficient α₅

0,0 0,2 0,4 0,6 0,8 1,0 1,2

1/3 oct. 1/1 oct.

Measurements set-up 2

1: Vinyl wallcovering
2: Gypsum plasterboard, t=12,5 mm
3: Mineral wool

Volume reverberation room: 214 m³
Surface area sample: 11,7 m²
Height of the construction: 0,053 m

signal: broad-band noise
bandwidth: 1/3 octave

α₅ (ISO 11654) = 0,10
NRC (ASTM - C423) = 0,10
SAA (ASTM - C423) = 0,08

Mook, measured at 12-12-2016
Wallcovering 001
manufacturer: Vescom
type: Nero
view side: Vinyl
weight 354 gr/m²
thickness 0,5 mm
backing: none

Measurement set-up 3
1: Vinyl wallcovering
3: Mineral wool

to be continued...
Variant 6

Wallcovering 002
manufacturer: Vescom
Type: Color Choice
view side: Vinyl
weight: 419 gr/m²
thickness: 0.5 mm
backing: none

Measurement set-up 3
1: Vinyl wallcovering
3: Mineral wool

Volume reverberation room: 214 m³
Surface area sample: 11.7 m²
Height of the construction: 0.040 m
Measured at: Peutz Laboratory for Acoustics
Signal: Broad-band noise
Bandwidth: 1/3 octave

αₜₚ (ISO 11654) = 0.20 (LM)
NRC (ASTM - C423) = 0.45
SAA (ASTM - C423) = 0.47

Mook, measured at 12-12-2016

Figure 8