MÜLLER-BBM Müller-BBM GmbH Robert-Koch-Str. 11 82152 Planegg bei München Telephone +49(89)85602 0 Telefax +49(89)85602 111 www.MuellerBBM.de M. Eng. Philipp Meistring Telephone +49(89)85602 228 Philipp.Meistring@mbbm.com 2019-02-12 M111250/21 MSG/STEG # Fabric Tay 8077 Vescom B.V. Measurement of sound absorption in a reverberation room according to EN ISO 354 Test report no. M111250/21 Client: Vescom B.V. Sint Jozefstraat 20 5753 AV Deurne The Netherlands Consultant: M. Eng. Philipp Meistring Jan-Lieven Moll Date of report: 2019-02-12 Date of test: 2019-02-06 Total number of pages: In total 12 pages: 5 pages text 2 pages Appendix A,1 page Appendix B and4 pages Appendix C. Müller-BBM GmbH HRB Munich 86143 VAT Reg. No. DE812167190 Managing directors: Joachim Bittner, Walter Grotz, Dr. Carl-Christian Hantschk, Dr. Alexander Ropertz, Stefan Schierer, Elmar Schröder # **Table of contents** | 1 | Task | 3 | |-----|-------------------------------|---| | 2 | Basis | 3 | | 3 | Test object and test assembly | 3 | | 3.1 | Test object | 3 | | 3.2 | Test assembly | 4 | | 4 | Execution of the measurements | 4 | | 5 | Evaluation | 5 | | 6 | Measurement results | 5 | | 7 | Romarks | 5 | Appendix A: Test certificates Appendix B: Photos Appendix C: Description of test method, test facility and test equipment ## 1 Task On behalf of the company Vescom B.V., NL-5753 AV Deurne, the sound absorption of the fabric Tay 8077 had to be measured according to EN ISO 354 [1] in the reverberation room. The fabric was tested as a curtain in a flat and a folded arrangement. ## 2 Basis This test report is based on the following documents: - [1] EN ISO 354: Acoustics Measurement of sound absorption in a reverberation room. 2003-05 - [2] EN ISO 11654: Acoustics Sound absorbers for use in buildings Rating of sound absorption. 1997-04 - [3] ASTM C 423-17: Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method. Revision: 17 - [4] ISO 9613-1: Acoustics; Attenuation of sound during propagation outdoors; part 1: calculation of the absorption of sound by the atmosphere. June 1993 - [5] EN 29053: Acoustics Materials for acoustical applications Determination of airflow resistance. 1993-05 # 3 Test object and test assembly # 3.1 Test object The tested material is described by the manufacturer as follows: - curtain fabric type Tay 8077 The following parameters were determined by the testing laboratory: thickness: t = 0.36 mm - specific airflow resistance acc. to EN 29053 [5]: $R_s = 222 \text{ Pa} \cdot \text{s/m}$ - area-related mass: $m'' = 99 \text{ g/m}^2$ # 3.2 Test assembly The installation of the test objects was carried out by employees of the test laboratory in the reverberation room of Müller-BBM. The test objects were installed in a flat and a folded arrangement. Both arrangements were mounted as follows: - clear distance to the reflective wall 150 mm - fixed directly underneath the ceiling on a metal rail (h = 60 mm) - measurement without enclosing frame - visible side corresponding to marking by the manufacturer faced to the reverberation room The mounting details for the tested arrangements are as follows: - a) flat arrangement - mounting type G-150 acc. to EN ISO 354 [1], section 6.2.1 and Appendix B of EN ISO 354 [1] - one curtain width x height = 3500 mm x 3000 mm - total dimensions of the test surface (starting at the lower edge of the metal rail) width x height = 3500 mm x 2940 mm - b) folded arrangement - mounting type following G-150 acc. to EN ISO 354 [1] - 100 % fabric addition - two curtains: width x height = 3500 mm x 3000 mm and width x height = 3490 mm x 3000 mm, 20 mm overlap - total dimensions of the test surface (starting at the lower edge of the metal rail) width x height = 3485 mm x 2940 mm Appendix B contains photos of the tested arrangements. # 4 Execution of the measurements The measurements were executed and evaluated according to EN ISO 354 [1]. The test procedure, the test stand and the test equipment used for the measurements are described in Appendix C. ## 5 Evaluation The sound absorption coefficient α_S was determined in one-third octave bands between 100 Hz and 5000 Hz according to EN ISO 354 [1]. In addition to the sound absorption coefficients the following characteristic values were determined according to EN ISO 11654 [2]. - practical sound absorption coefficient α_p in octave bands - weighted sound absorption coefficient α_w as single value: The weighted sound absorption coefficient α_w is determined from the practical sound absorption coefficients α_D in the octave bands of 250 Hz to 4000 Hz. According to ASTM C 423-17 [3] the following characteristic values were determined: - noise reduction coefficient NRC as single value: - Arithmetical mean value of the sound absorption coefficients in the four one-third octave bands 250 Hz, 500 Hz, 1000 Hz and 2000 Hz; mean value rounded to 0.05. - sound absorption average SAA as single value: Arithmetical mean value of the sound absorption coefficients in the twelve one-third octave bands between 250 Hz and 2500 Hz; mean value rounded to 0.01. # 6 Measurement results The sound absorption coefficients α_S in one third-octave bands, the practical sound absorption coefficients α_p in octave bands and the single values α_w , *NRC* and *SAA* are indicated in the test certificates in Appendix A. ## 7 Remarks The test results exclusively relate to the investigated subjects and conditions described. M. Eng. Philipp Meistring (Project Manager) Ph Motor This test report may only be published, shown or copied as a whole, including its appendices. The publishing of excerpts is only possible with prior consent of Müller-BBM. Durch die DAkkS Deutsche Akkreditierungsstelle GmbH nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren. # Sound absorption coefficient ISO 354 # Measurement of sound absorption in reverberation rooms Client: Vescom B.V., Sint Jozefstraat 20, 5753 AV Deurne, Netherlands Test specimen: Fabric Tay 8077, Wall distance 150 mm, flat arrangement #### **Curtain fabric:** curtain fabric Tay 8077 - area-related mass m" = 99 g/m² - airflow resistance R_S = 222 Pa s/m - thickness t = 0.36 mm ## **Test arrangement:** - mounting type G-150 acc. to EN ISO 354, without enclosing frame - one curtain width x height = 3500 mm x 3000 mm - fixed directly underneath the ceiling on a 60 mm high metal rail - wall distance 150 mm - test surface width x height = 3500 mm x 2940 mm (starting at the lower edge of the metal rail) Room: E Volume: 199.60 m³ Size: 10.29 m² Date of test: 2019-02-06 | Frequency | 1/3 | α _S
octave | α _p
octave | |-----------|-----|--------------------------|--------------------------| | [Hz] | | | | | 100 | 0 | 0.01 | | | 125 | 0 | 0.01 | 0.00 | | 160 | 0 | 0.04 | | | 200 | 0 | 0.06 | | | 250 | | 0.11 | 0.15 | | 315 | | 0.23 | | | 400 | | 0.37 | | | 500 | | 0.48 | 0.45 | | 630 | | 0.55 | | | 800 | | 0.58 | | | 1000 | | 0.46 | 0.45 | | 1250 | | 0.35 | | | 1600 | | 0.45 | | | 2000 | | 0.54 | 0.50 | | 2500 | | 0.47 | | | 3150 | | 0.54 | | | 4000 | | 0.55 | 0.55 | | 5000 | | 0.55 | | | | θ [°C] | r. h. [%] | B [kPa] | |------------------|--------|-----------|---------| | without specimen | 18.6 | 35.0 | 96.2 | | with specimen | 18.1 | 35.1 | 96.3 | $[\]circ$ Equivalent sound absorption area less than 1.0 m^2 α_S Sound absorption coefficient according to ISO 354 Rating according to ISO 11654: Weighted sound absorption coefficient $\alpha_{w} = 0.45$ Sound absorption class: D Rating according to ASTM C423: Noise Reduction Coefficient *NRC* = 0.40 Sound Absorption Average *SAA* = 0.39 Planegg, 2019-02-12 No. of test report M111250/21 Mustra Appendix A Page 1 α_n Practical sound absorption coefficient according to ISO 11654 # Sound absorption coefficient ISO 354 # Measurement of sound absorption in reverberation rooms Client: Vescom B.V., Sint Jozefstraat 20, 5753 AV Deurne, Netherlands **Test specimen:** Fabric Tay 8077, Wall distance 150 mm, folded arrangement (100 % fabric addition) #### **Curtain fabric:** curtain fabric Tay 8077 - area-related mass m" = 99 g/m² - airflow resistance R_S = 222 Pa s/m - thickness t = 0.36 mm ## **Test arrangement:** - mounting type following G-150 acc. to EN ISO 354, without enclosing frame - two curtains with: width x height = 3500 mm x 3000 mm and width x height = 3490 mm x 3000 mm arrangement with 20 mm overlap - fixed directly underneath the ceiling on a 60 mm high metal rail - wall distance 150 mm - test surface width x height = 3485 mm x 2940 mm (starting at the lower edge of the metal rail) Room: E Volume: 199.60 m³ Size: 10.25 m² Date of test: 2019-02-05 | Frequency | 1/3 | α _S
octave | α _p
octave | |-----------|-----|--------------------------|--------------------------| | [Hz] | | | | | 100 | 0 | 0.06 | | | 125 | 0 | 0.07 | 0.10 | | 160 | | 0.16 | | | 200 | | 0.22 | | | 250 | | 0.30 | 0.35 | | 315 | | 0.49 | | | 400 | | 0.58 | | | 500 | | 0.63 | 0.60 | | 630 | | 0.66 | | | 800 | | 0.65 | | | 1000 | | 0.65 | 0.65 | | 1250 | | 0.70 | | | 1600 | | 0.70 | | | 2000 | | 0.72 | 0.70 | | 2500 | | 0.73 | | | 3150 | | 0.76 | | | 4000 | | 0.79 | 0.80 | | 5000 | | 0.80 | | | | θ [°C] | r. h. [%] | B [kPa] | |------------------|--------|-----------|---------| | without specimen | 18.6 | 35.0 | 96.2 | | with specimen | 18.6 | 34.1 | 96.3 | $[\]circ$ Equivalent sound absorption area less than 1.0 m^2 α_S Sound absorption coefficient according to ISO 354 Rating according to ISO 11654: Weighted sound absorption coefficient $\alpha_w = 0.60 \ (H)$ Sound absorption class: C Rating according to ASTM C423: Noise Reduction Coefficient *NRC* = 0.60 Sound Absorption Average *SAA* = 0.59 MÜLLER-BBM Planegg, 2019-02-12 No. of test report M111250/21 Mustra Appendix A Page 2 α_n Practical sound absorption coefficient according to ISO 11654 # Fabric Tay 8077 Figure B.1. Flat arrangement, test arrangement in the reverberation room. Figure B.2. Folded arrangement, test arrangement in the reverberation room. # Description of the test procedure for the determination of the sound absorption in a reverberation room ### 1 Measurand The sound absorption coefficient α of the test object was determined. For this purpose the mean value of the reverberation time in the reverberation room with and without the test object was measured. The sound absorption coefficient was calculated using the following equation: $$\alpha_{S} = \frac{A_{T}}{S}$$ $$A_{T} = 55.3 V \left(\frac{1}{c_{2}T_{2}} - \frac{1}{c_{1}T_{1}} \right) - 4 V (m_{2} - m_{1})$$ With: $\alpha_{\rm S}$ sound absorption coefficient; A_{T} equivalent sound absorption area of the test object in m^{2} ; S area covered by the test object in m²; V volume of the reverberation room in m^3 ; c_1 propagation speed of sound in air in the reverberation room without test object in m/s; c₂ propagation speed of sound in air in the reverberation room with test object in m/s; T_1 reverberation time in the reverberation room without test object in s; T_2 reverberation time in the reverberation room with test object in s; m₁ power attenuation coefficient in the reverberation room without test object in m⁻¹; m_2 power attenuation coefficient in the reverberation room with test object in m⁻¹. The different dissipation during the sound propagation in the air was taken into account according to paragraph 8.1.2 of EN ISO 354 [1]. The dissipation was calculated according to ISO 9613-1 [4]. The climatic conditions during the measurements are indicated in the test certificates. Information on the repeatability and reproducibility of the test procedure are given in EN ISO 354 [1]. # 2 Test procedure # 2.1 Description of the reverberation room The reverberation room complies with the requirements according to EN ISO 354 [1]. The reverberation room has a volume of $V = 199.6 \text{ m}^3$ and a surface of $S = 216 \text{ m}^2$. Six omni-directional microphones and four loudspeakers were installed in the reverberation room. In order to improve the diffusivity, six composite sheet metal boards dimensioned $1.2 \text{ m} \times 2.4 \text{ m}$ and six composite sheet metal boards dimensioned $1.2 \text{ m} \times 1.2 \text{ m}$ were suspended curved and irregularly. Figure C.1 shows the drawings of the reverberation room. Figure C.1. Plan view and sections of the reverberation room. # 2.2 Measurement of reverberation time The determination of the impulse responses were carried out according to the indirect method. In all tests, a sinusoidal sweep with pink noise spectrum was used as test signal. In the reverberation room with and without test objects each 24 independent combinations of loudspeakers and microphones were measured. The reverberation time was evaluated according to EN ISO 354 [1], using a linear regression for the calculation of the reverberation time T_{20} from the level of a backward integrated impulse response. The determined reverberation times in the reverberation room with and without test object are indicated in Table C.1. Table C.1. Reverberation times without and with test objects. | | Reve | Reverberation time T/s | | | | |------------------|-------------------------------------|-----------------------------------|-------------------|--|--| | Frequency f / Hz | T ₁ (without test object | T ₂ (with test object) | | | | | | Appendix A page 1 | Appendix A page 1 | Appendix A page 2 | | | | 100 | 5.04 | 4.92 | 4.62 | | | | 125 | 5.09 | 5.00 | 4.58 | | | | 160 | 5.39 | 5.02 | 4.22 | | | | 200 | 5.13 | 4.66 | 3.76 | | | | 250 | 5.11 | 4.33 | 3.42 | | | | 315 | 4.97 | 3.63 | 2.80 | | | | 400 | 5.33 | 3.28 | 2.68 | | | | 500 | 5.39 | 2.95 | 2.58 | | | | 630 | 5.25 | 2.73 | 2.50 | | | | 800 | 4.97 | 2.58 | 2.45 | | | | 1000 | 5.08 | 2.91 | 2.48 | | | | 1250 | 5.09 | 3.24 | 2.39 | | | | 1600 | 4.89 | 2.87 | 2.33 | | | | 2000 | 4.51 | 2.53 | 2.21 | | | | 2500 | 3.65 | 2.36 | 1.96 | | | | 3150 | 2.84 | 1.90 | 1.67 | | | | 4000 | 2.15 | 1.55 | 1.38 | | | | 5000 | 1.66 | 1.27 | 1.15 | | | # 2.3 List of test equipment The test equipment used is listed in Table C.2. Table C.2. Test equipment. | Name | Manufacturer | Туре | Serial-No. | |---|--------------|--------------|----------------------------| | AD-/DA-converter | RME | Fireface 802 | 23811470 | | Amplifier | APart | Champ 2 | 09050048 | | Dodecahedron | Müller-BBM | DOD360A | 372828 | | Dodecahedron | Müller-BBM | DOD360A | 372829 | | Dodecahedron | Müller-BBM | DOD360A | 372830 | | Dodecahedron | Müller-BBM | DOD360A | 372831 | | Microphone | Microtech | M370 | 1355 | | Microphone | Microtech | M370 | 1356 | | Microphone | Microtech | M360 | 1786 | | Microphone | Microtech | M360 | 1787 | | Microphone | Microtech | M360 | 1788 | | Microphone | Microtech | M360 | 1789 | | Microphone power supply | MFA | IV80F | 330364 | | Hygro-/Thermometer | Testo | Saveris H1E | 01554624 | | Barometer | Lufft | Opus 10 | 030.0910.0003.9.
4.1.30 | | Software for measurement and evaluation | Müller-BBM | Bau 4 | Version 1.11 |